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L Abstract

We are investigating the RF impedance characteristics of a small spherical probe immersed
in a laboratory plasma. The experimental facility is the large Space Physics Simulation Chamber at
the Naval Research Laboratory. The data taken are from network analyzer measurements of the
reflection coefficient obtained when applying a low level RF signal to the probe which is either near
floating potential or negatively DC-biased in a low pressure plasma. As is well known, sheaths form
around objects placed inside plasmas. The electron density is smaller inside the sheath, and the
reduction in density alters the plasma impedance. Surprisingly, the impedance becomes "resistive",
even though the plasma is effectively collisionless, at frequencies below the bulk plasma frequency,
thus leading to collisionless energy absorption. This behavior comes directly from solving Maxwell's
equations together with cold fluid equations, and the solutions obtained indicate that the plasma
resistance is inversely proportional to the plasma density gradient evaluated at the location where the
plasma frequency is equal to the applied frequency. The resistance is appreciable, however, only if the
sheath is nearly as thick as the sphere, and thus for our plasmas the sphere must be small in order that
resistive effects be evident. Applying a supplemental, negative DC bias to the sphere thickens the
sheath and thereby raises its resistance. Doing so helps increase the power transferred to the plasma.
Much of the earlier work in this area of collisionless resistance concentrated primarily on planar probes
as opposed to the present work which is concerned with spheres. Interpreting the results is simpler
for a sphere and the results obtained agree well with theory as described. For comparison to the
theory we use only the SI, parameter outputs (or reflection coefficients) of the network analyzer in
the experimental series. Significant energy absorption is observed at frequencies generally near one-
half the plasma frequency. One result of this is that the most efficient transfer of power to the plasma
occurs not unexpectedly when there is impedance matching between input impedance and output
(collisionless) impedance. This paper is an exposition of these ideas along with data results and a
comparison to theory for the spherical probe which to our knowledge has not been published in this
form.

Manuscript approved August 31, 2005.



II. Introduction

The use of RF impedance probes to measure plasma parameters is a well-established
experimental method investigated early on in both the laboratory' 2 and in the space plasma
environment nearly a half-century ago3 . More recently in the laboratory there have been continuing
experimental and theoretical studies4̀  of plasma-sheath resonance phenomena. In addition to
providing electron density, recent work4 concentrates on improving low pressure plasma processing
by providing a novel operation mode for parallel plate reactors. Another study5 concentrates on
measurement of plasma density, temperature and collision frequency in a laboratory plasma in the
presence of collision frequencies on the order of or larger than the plasma frequency. In space, various
forms of plasma frequency-based resonant probes are regularly used to investigate electron density and
temperature from satellites and often in night time rocket investigations of mesospheric or ionospheric
phenomena 6'7 . Theoretical treatment and the analysis of data from impedance probes and antennas of
various shapes and sizes is to be found in numerous studies.8'9"0 There is a body of early theoretical
and experimental work related to the phenomenon of RF resonance both above and below the plasma
frequency. 1,12,13

The investigation of collisionless resistance associated with resonance phenomena that is
thought to arise due to plasma inhomogeneity, may be said to originate with the work of Tonks'4.
However the problem did not receive further attention until Herlofson'5 , trying to account for resonant
scattering observed in connection with ionized meteor trails, was the first to introduce the idea of an
effective collision frequency associated with density gradients. The phenomenon associated with this
effective collision frequency was named the Herlofsonparadaox and was not treated until some years
later'6 when the physically appealing explanation arose that a plasma with a density gradient may be
viewed as a continuous distribution of uncoupled oscillators, each oscillator representative of the
plasma frequency at a given location. In this idea, the driving energy is dispersed as a transient
response into differing plasma frequencies and therefore it is not sufficient to consider only one Fourier
component in the analysis. In a rigorous mathematical treatment'7 the problem of a conducting sphere
immersed in a homogeneous plasma was analyzed. Using the Boltzmann-Vlasov equations along with
Maxwell's equations this work was able to arrive at both the impedance and the electric field under
an assumption of a realistic sheath potential distribution. The final results include a real part to the
impedance which is dependent upon neutral collisions even for the case in which the sheath is assumed
to be vacuum and the plasma is homogeneous. In other early resonance probe work'8 related to
spherical probes, the justification for resonance conditions also required electron-neutral collisions.
Neither work treats in any detail ideas of collisionless absorption. Perhaps the first exhaustive
theoretical treatment aimed specifically at collisionless absorption' 9 obtains an expression for the
collisionless resistance by comparing total energy input to a driven parallel plate capacitor to that
absorbed (This article contains detailed references to early investigations of the phenomenon). In this
work, the impedance of a plasma contained between two parallel plates and possessing a symmetric
density gradient results in a contour integral for which there is a non-zero, and real, positive residue.
It is this residue which was treated properly in this work and is responsible for the absorption.
Researchers during this time were active in uncovering still further experimental and theoretical bases
for the observations in general investigations of resonance probes In more recent work4'22'23 the
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phenomenon is treated in a in a series of experiments accompanied by theory.

The basis of these measurements lies in the observation that the impedance properties
associated with an antenna or probe are altered by the presence of a plasma and from these alterations
plasma characteristics can be determined. In vacuum, for example, there is no significant
electromagnetic radiation from a loop antenna until the wavelength of the driving signal is on the order
of the loop circumference. Antenna size, along with its shape, with respect to frequency influences
power requirements necessary to produce detectable electromagnetic radiation. In this case, a
radiation resistance is defined by the ratio of input power to the square of the antenna current. When
power is being radiated and there is insignificant internal antenna resistance this ratio allows a
definition of a "resistance" and hence a radiated power. A device measuring the ratio of input power
to reflected power from such an antenna would see this ratio drop to less than one assuming there is
no impedance mismatch between the signal generator and the antenna with its associated cabling. In
the presence of a plasma, however, there is an additional means to transfer energy from the antenna
through internal plasma currents which can arise due to the presence of antenna current itself and the
interaction of the antenna with the plasma which occurs through the sheath. In one work, for
example, it was shown2" that very small radiated power emitted from an antenna in vacuum is
increased through plasma-sheath coupling to the plasma by a factor of -400 when immersed in a
plasma. Measuring antenna impedance when the antenna is placed inside a plasma then provides a
method of studying the plasma fluctuations which are excited and from this study to infer plasma
characteristics.

Langmuir oscillations in a cold plasma occur at the plasma frequency and are expressible in
terms of an impedance which is only capacitive and inductive. However, if there are collisional
processes associated with the plasma currents the impedance acquires a resistive component. And so
it is natural to associate this energy transfer also with an effective antenna resistance in the same
manner as is done in the classical definition of radiation resistance cited above. At first glance in a
cold, collisionless, unmagnetized plasma there would appear to be no means of dissipating the driving
energy to extract useful energy (again assuming negligible antenna resistance) since there is no resistive
term and the capacitive and inductive responses are adiabatic. Nevertheless, energy absorption often
occurs in such plasmas for various antenna shapes. Central to this absorption is the formation of a
plasma sheath around the antenna. It has long been known that energy dissipation can occur at
frequencies lower than the plasma frequency in collisionless plasmas at frequencies characterized as
the sheath-plasma resonance. 1,4, 8,11,13, 16,17,18,22, 23

To more accurately predict the result of applying an AC signal to a probe immersed in a
collisionless plasma, the simple hydrodynamic approach was replaced by a solution of the Vlasov
equation 7̀' 8 with plasma resonances related to gradients in electron density as already noted. In the
simplest model of the antenna immersed in a plasma the sheaths are treated as vacuum capacitors, the
plasma impedance arises as a series combination of inductor-resistor in parallel with a capacitor, and
the solutions for net impedance appear as parallel and series resonant solutions. 24 25  For the
collisionless plasma without sheaths the impedance is purely reactive and results in no energy
absorption. With sheaths included there arises an energy deposition which is a function of the density
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profile in the sheath. Resonance power transfer which occurs results from the fact that at resonance
the reactance of the antenna-plasma system is near zero and therefore the impedance becomes all
resistive. The resonances are "Landau-type" resistive components arising in cold, collisionless
plasmas. Toward a more physical insight into these resonances, it was pointed out in a brief
communication 28 that a network of a large number of resonating circuits with differing time constants
exhibits resistance properties in a thermodynamic sense as a transient response. From a physical point
of view this represents a different form of energy dispersal than in the collisional case. Since there
is a multitude of ways that the energy can be dispersed, the process is thermodynamically irreversible
in the sense that it is highly unlikely that any "reflected" energy would be returned in its original form.

Another mechanism cited for energy absorption when driving a probe with an RF signal is the
phenomenon of stochastic heating.2 9'3 The idea inherent in this power transfer scheme is that there
is a sheath oscillation produced by the driving signal from which electrons can be reflected in the case
of a sufficiently high voltage sheath. On average this can be shown to result in a power transfer which
is proportional to the difference in electron and sheath velocities in addition to the electron distribution
function.24 The oscillating voltage levels we apply to the probe in the experiment are small compared
to the floating potential or any DC bias potentials and are considered a perturbation. In this case, it
appears that the idea of a sheath oscillation contributing to power loss is remote. Nevertheless we
consider power transfer below for varying levels of the applied signal voltage.

Our aim in the brief work here is to derive an approximation to the expected collisionless
resistance for a small spherical probe in a vacuum chamber and to compare these predictions with
experimental results which indicate energy absorption at frequencies less than the plasma frequency.
The general result is not specific with respect to the assumed sheath electron density profile but we
calculate results for a model of the collisionless sheath and compare these results to measurements of
the network analyzer. The measurement method uses only the ratio of reflected to total power for
a small Aluminum sphere inserted into a plasma, biased either not at all or into ion saturation, and
driven by a small RF signal. In other papers25" 2a we have used a basic circuit model in order to
understand impedance observations obtained from the network analyzer for the driven sphere. In
addition those papers shows how one can infer both plasma density and sheath thickness from the
measurements. In this paper, we concentrate only on observations of energy absorption.

IlL Experimental Configuration

The experimental facility consists of a large-volume cylindrical chamber, in addition to a
smaller high-magnetic field chamber which is separated from the main volume by a large gate valve.
The series here was performed in the large chamber whose radius and length are (2m x 5m). Typical
densities of the argon plasma for the series vary from 10' to 109 cm-3 . Electron temperature is near
0.5 eV and since the chamber is operated at pressures near 3 x 10 4Torr, Ven - 6 x 1O0 s-' and Po, the
plasma frequency, is typically 9 x 108 s -'. Neutrals and therefore ions are at room temperature. The
plasma is created by a tungsten filament source located at one end of the large chamber and covering
a large portion of the inner end-plate surface area. It is maintained by a low-level axial magnetic field
on the order of 2-3 Gauss provided by 5 coils aligned axially in a Helinholtz configuration and so the
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plasma is not magnetized to the level that Larmor orbits become important which is demonstrated
below. Electron density and temperature measurements are made with a heated Langmuir probe.
Further details of the experimental configuration and the general laboratory setup are to be found
elsewhere.

26,27

The small Aluminum sphere of 0.95 cm radius is connected to an HP8735D Network
Analyzer through 50 Q coaxial cable. The cabling is 1/4" semi-rigid coax whose outer jacket and
dielectric are removed at a short section at the tip to allow the center conductor to be inserted into the
sphere for mounting. This arrangement is described in an earlier papere.

The primary measurement of interest for this work is the network analyzer measurement of
reflected power which is related to plasma impedance through,

Z-Zo0 (1)
z+zo

where F 2, is the ratio of reflected-to-total power. Z is the external impedance and the internal
impedance of the Network Analyzer, Zo, is 50 0 and the additional impedance from the cabling and
shaft can be compensated by proper calibration of the instrument when connected either to another
50 0 resistor or when calibrated as an open circuit. A significant advantage of this technique is that
these procedures essentially allow the removal of the effects associated with the transmission line.

IV. Theory

a. Impedance

We use Maxwell's equations directly along with the electron momentum equation to obtain
an expression for the impedance. From Gauss' law,

VE = 47tp , (2)

along with the continuity equation,

a p+Vj 0 O, (3)

we obtain,
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V-( a-E +4 v)=o. (4)
at

For a sphere the field and current are purely radial, so that,

I a_[r2(41j+ E)]=O . (5)

r 2 r at

From the form of this equation we recognize that the sum of conduction and displacement currents
leaving the sphere is constant in space and must be the same as the total current 1o(t). This allows,

aE. A#()47rj+ at r2  (6)

If we further assume that electrons, being the lightest species, carry all the current, that they
are cold, and that the wave amplitude is small, the electron momentum equation reduces to,

aj e 2En (7)- -vj .(7)
at m

where v is the electron collision frequency. r The important point here is that we are assuming cold
electrons and 6o >> /V, -V/. This is true as long as the RF amplitude is not too high. For example,
in the experiments the sheath width s > 4 by assumption and Ve .Vcan be dropped as long as
Ve<<(Tlm)' as is almost always the case.] Then ifj and E vary as e"' the current density is,

2 2//

e2= E= E, (8)
m(v +iG) 4it(v+i&)

so that we may finally write the expression for E(rt) as,

E(rt)= 10(t) 10(t) v+ico
r 2(aP r2 ( -WP2 2)+iWv (9)

(v+iw)

From this form the impedance is obtained,
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Z=Y 0= f E(rt) =dr
0 RI R1 r e

where Vo is the voltage across the plasma. We point out that this expression was derived
independently of any assumption regarding an electron density profile. To include a sheath the integral
limits will change to accommodate the sheath density profile as separate from that of the bulk plasma.
Although this expression for Z was gotten by a straightforward application of Maxwell's equations,
models for probe plasma interactions often rely on elementary capacitance arguments. For
completeness, in Appendix I we derive again Eqn (10) using an analogy to concentric spheres and
allowing for an electron density gradient in the region where energy absorption occurs.

The evaluation of integrals of the type seen in Eqn (10) has been the subject of numerous
articles over the years outlined in the Introduction. Simply stated, there is a pole in the integrand
generated by the inhomogeneity in plasma density which forces an evaluation of the integral as a
contour integral in the upper-half complex plane circling half the pole. (This pole can be seen from
setting v = 0 and noting that the integrand has a singularity at (,p, = (o. If then (ope = )Lpe(r) the integral
will have a singularity at those locations, r, for which co = wp,(r)). In early attempts14 the contribution
from the pole was ignored and the result of the integration is purely imaginary. The complete result
of this integration however includes both the imaginary contribution which arises from the principal
value of the integral in addition to the residue from the poles which is real and is responsible for energy
absorption and depends ultimately on the geometry. We may evaluate this integral by a change of
variable. Assuming v = 0, we may rewrite the impedance as,

Z= fd = Ad f df(,2)[--Pe -1 1

r~ (2 2 _ (a2) 2r 2~(o2 2)2
Z= (11) )P

which results in,
d2

Z-iL)P+ r• ] (12)2 dr 1 r~r (12
r

In Eqn (11), cw, is the final bulk electron density and 6)p| is the density at the probe surface usually
taken to be zero. w is the electron plasma frequency associated with position r, wo is the applied RF
signal, and r, is a resonant position. Included in Eqn (12) are the principal value P contribution to the
integral, which is the reactive part of the impedance, and the last term, which is the resistance residue

7



from the pole at r,. The resistance exists only if r, < rr < r, where r, is the sphere radius and r, is the
sheath or within the sheath where s = r, - r,. Beyond r = r, the density is assumed constant.
Effectively Eqn (12) exhibits a varying resistance as a function of the frequency, (o, of the applied
signal and hence an avenue for energy deposition as a function of frequency. We stress at this point
then that the collisionless resistance calculated arises not from a bulk plasma density gradient but from
a density gradient in the sheath at the probe itself. That the plasma inhomogeneity in the sheath can
be responsible for collisionless energy absorption is not new. Many studies of antenna radiation in
plasmas 18'32 conclude that energy is absorbed in inhomogeneous ion sheaths around the antenna when
trying to radiate at a frequency which matches a localized plasma frequency in the sheath.

Eqn (8) indicates that a collisionless plasma is resistive only if 62w< 6< 6m,- and that the RF
resistance is given by

R(ca)=Re(Z,.,)= [-P]-lL=r• (13)
A d

Here Ar is just 4;7rr2, the surface area at the resonant radius, rr. As (o increases, the resonant area
increases while d62/dr decreases. The resistance peaks at a frequency opk lying between w1, and W(.

If the sheath is much thinner than r, the resistance peaks near the transition from the sheath to the
presheath in which case 62pk -- (0.6)112 wmo.. However, for a thick sheath the resistance peaks within
the sheath (closer to the sphere), in which case •dpk :0. 5 2,,d ...

To estimate the reactive impedance, we observe that the integrand for P changes sign at r,.
If we assume the contributions from the two regions on either side of r,. are small or cancel, the
reactive impedance is given by

ZribP " (W . 262) (14)

In the experiments, the sphere radius is r, = 0.95 cm while the sheath thickness typically
satisfied s Ž440 -0.2 cm. The presheath was far thicker yet (about 15 cm at 0.3 Torr), and thus the
highest resistance is expected to occur when c2 -: 0.8 6o. The peak resistance can reach 20 kQ or
so, but only over a narrow range in frequency. Applying a negative DC bias to the sphere can lower
the peak resistance by increasing s.

b. A sheath model
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To evaluate dw/dr inside the sheath, we assume( i) the sphere is capacitively coupled and (ii)

the sheath is collisionless. With these assumptions we develop the following model for the sheath
density profile. For a collisionless sheath containing no sources or sinks, energy conservation limits
(inward) dc ion flow velocity to,

I

u,(r)=cj[1 _ 2__4] (15)

while flux conservation dictates that

C rr
n£r) -= n,(s)[1- 4j2[ ]2 (16)

u(r) r T r

Here n, is ion density, Te is the electron temperature, cs = (TIM)" is the Bohm speed, M is the ion
mass, n+(r,) is the density at the sheath edge rs, and 4ý •0 is the electrostatic potential relative to its
value at r,.

For electrons, we can use the Boltzmann approximation,

ne( (r)exp[- ](17)
T.

and assume current neutrality,

ne,(r)ue,(r)= n.(r,)u (r) (18)

because the sphere is capacitively coupled. Kinetic theory indicates that the electron velocity at the
sphere radius ro satisfies,

ue)[ ]2 (19)

where m<<M is the electron mass. If we also assume quasineutrality at the sheath edge,
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ne(rs)= n±(r,)= n. (20)

the electron density at the sphere ( r = r, ) is given by,

r, 27tm I 2rtm 2e4(rj)j
n(r,)= n =n,(r,)[(- )(1- _ ) (21)

Poisson's equation then closes the model:

I d[r2  ]=4rte[ne(r)-n±(r)] (22)

Using Eqns (16) and (17), Eqn (22) may be rewritten as,

Id 2 d4 14 [2 4) 1 (23)
r'2dr dr T S T(

The solution of this differential equation with appropriate boundary conditions at the sheath
edge (on q(rj) and 0'(r)) will yield the form of the potential and hence the electron density
distribution inside the sheath(See below).However the equation is solved (eg., by iteration), there must
be consistency with the Boltzmann approximation (Eqn (17) along with the quasineutrality assumption
at the sheath edge which implies Eqn (21). These two constraints require that,

eo(rj) r, 2 2rtmexp(---e-) = ( [---M l (24)

Using these constraints and solving Eqn (23) by iteration we are able to produce an
approximation to q5(r) as shown in Figure (1). (To produce a better rough approximation to the
derivative, see the arguments related to the form of the presheath below).

Equation (24) applies for a capacitively coupled (floating) sphere only. If we apply a voltage
to the sphere, its dc current Id, becomes nonzero and Eqn (18) is no longer valid. That is, the electron
velocity at r, no longer can be equated to c, but is instead given by

ue(rs)=c, 4Ire (25)
24Trr, en,
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The electron velocity at the sphere is still given by Eqn (19), however, and the Boltzmann relationship
of Eqn (17) still holds. Consequently, conservation of electron flux now yields

2 .() 2 ek(r1) T I
r. u (r,)=r e1 )u(rl)=rexp[ ]I ]2 (26)

Setting c, (TIM)½ and using Eqn (25), we thus obtain

e4(rl) 2nm -1 rd
exp[ ]-• =1 =[-- 2 R V_ --d, (27)M r 4tnr 'en c,

T9 M

in place of the condition of Eqn (24). A negative external potential decreases the electron current
reaching the sphere, so the net current Idc becomes positive. Both the left-hand side and right-hand
side therefore increase, and presumably r, increases as well.

c. Presheath

In order to solve Eqn (23), even iteratively, it is necessary to apply boundary conditions on the
function q5(r) in addition to its first derivative at the sheath edge as stated above. As an
approximation to this a zero order estimate might be used which requires the potential to vanish along
with its slope at this position. Although this yields an approximation to the solution for Ol(r) and hence
the electron density and plasma potential gradients, the solution strictly requires matching boundary
conditions between the sheath and the presheath. Consequently we consider briefly the presheath
model. To model the presheath, we assume the ions are collisionless as before but replace Poisson's
equation with quasineutrality or,

ne=n,-n for r>r, (28)

We then use Eqns(16) and (17) to conclude that

exp[- e-][1- 2e4]1[ rs]2 (29)
Te Te r

From this form we can obtain qO'r). The Eqn (29) has a solution which involves a Lambert function
and for completeness this solution is shown in Figure (2) although we do not use the solution other
than to note the asymptotic value of q5consistent with the requirement that the square root in Eqn (29)
above must positive definite.
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Three points are worth noting here. First, q0 Ž0 in the presheath. Second, the voltage drop
across the presheath is limited to eq/' 0. 5 T, And third, the electric field in the presheath is given
by

dý r T'] T1o e
dr r er, e4ý T Te 309e

The field E in Eqn (30) points inward, as expected, but diverges at r, where q5 = 0. The
divergence is unphysical but not unexpected, and it is in fact the basis for the Bohm condition, u+ (rs)
= c In reality quasineutrality fails before the Bohm condition is met, and thus a transition region is
needed between the sheath and the presheath. Or what is the same thing, E --o at r, from the
presheath side but E -0 from the sheath side due to different scale parameters. This has been treated
in some detail by Riemann for a sphere [see p. 499 in J. Phys. D 24 (1991)] . The point here is that
we cannot use a boundary condition "exact" match from sheath to presheath. However, this is not
really necessary for purposes here, as we are only interested in an approximate solution for n (r) which
will allow a calculation of the gradient in the sheath and hence the collisionless resistance.

V. Experimental Results and Comparisons to Theory

a. Collisionless impedance

It has been shown or demonstrated 4,18.23 that the complex impedance which arises for an
alternating signal applied across an inhomogeneous plasma dielectric for parallel plate geometry of
area A has a real part responsible for collisionless energy absorption which is given by,

R= 7L

d c,-, (31)

(See Appendix III). This expression may be compared to Eqn (13) for the spherical case. It can be
shown to be consistent with Eqn (13) after taking into account the difference between planar and
spherical geometry and the inclusion of either two sheaths or one. In either case, if the driving signal
frequency, cw, is outside the range of plasma frequencies inherent in the plasma dielectric, then R is not
defined and the system response is purely reactive (i.e., the contour integral will have only a principal
value contribution). If one then imagines the entire range of plasma frequencies of the
inhomogeneous plasma to be a subset of a driving sweep, it might be concluded that the most energy
will be deposited where I dop/dx , or I dwJdr for the spherical case, has a local minimum. This is,
however, not strictly true since R must be considered for the general case as a load resistor and viewed
in light of its value with respect to the input impedance of the driving signal (w) circuitry.
Consequently the most efficient power transfer to the resistor (or the most energy absorption) does
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not occur for R a maximum, but should occur at a frequency for which R is equal to the input
impedance at resonance. At resonance the reactive part of the impedance is zero, the main plasma
is collisionless and therefore R represents the effective impedance at resonance. As an example of this
we note that in the limit of very large or very small R, there is no energy transfer as expected due to
impedance mismatch, e.g., if the plasma considered is homogeneous, the gradient goes away and R
= 0 consistent with no collisionless energy absorption. We plot in Figure (3) the experimental values
of the ReZ (Rj) obtained for 3 different plasma densities as a function of aodp,; In Figure (4) we show
once again experimental data, this time for Im Z, or the reactance. As expected the resistance shows
a singularity at or near the bulk plasma frequency and low resistance, on the order of 100-200 Ohms
near 6op/2. This low resistive value is the closest to matching impedance with the Network Analyzer
whose internal impedance is 50 Q. (We note here that data below will show significant power
deposition at approximately this frequency.) Also, the experimental reactance changes from
capacitive to inductive behaviour, i.e, the reactance changes from capacitive to inductive reflecting
the increase in the plasma component. Also, the reactance is negligible in the vicinty of wo/2. This
must be the case if significant energy is to be transferred to the plasma impedance. In the next section
we compare the absorbed power to data taken at different probe biases always, once again, in ion
saturation. In a later paper we treat this case for electron saturation.

b. Observed energy absorption

We plot in Figure (5) the derived resistance of Eqn (13) based on the sheath density profile
developed above for a bulk plasma density ofn, = 2.5 x 10o cm 3 . As noted above the resistance is
closest to Network analyzer impedance approximately halfway into the sheath and this corresponds
to an applied frequency near a)P/2.

(i) Dependence on input signal strength

Shown in Figure (6) is a plot of reflected power at fixed density for the sphere in ion
saturation at a DC bias level of Vbi.s = -5 Volts. Shown are three plots with varying input power from
the network analyzer. The data is taken again for a plasma density of 2.5 x l(s cm-3 and a neutral
pressure of 3.4 x 10-4 Torr. The abscissa of the plot is normalized driving frequency and the ordinate
is normalized reflected power, I Pl2, (or I S 2 as is the designation for the reflection coefficient). I r2
is defined as the ratio of reflected power, PR, to total power, P0, which includes also the reflected part
and which is held constant by the instrument, or,

Po = PR + P7, with Ip 2 = R (35)
PO

where PT is the transmitted power. Clearly 1 - F 2 is the normalized transmitted power, or the
absorbed power, which depends upon the absorption mechanism. From these quantities then it is
possible to calculate the impedance of the medium with which energy is exchanged or deposited. The
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plots vary from an input voltage of 0.1 mV up to 10 mV. As can be seen from these data there is very
little difference in reflected power as the input varies over a factor of 100. (We note here from these
voltage levels and from the data that stochastic heating does not play a role in energy absorption
levels.)

(ii) Dependence on bias voltage levels

We plot in Figure (7) an example of observed energy absorption at varying probe bias
potentials for the case where the electron neutral collision frequency ,v, is 4.5 x 105 s-' corresponding
to a neutral pressure of 2.5 x 10-4 Torr. In this case 6o, - 2 x 10' v. The ordinate of the plot is the
reflection coefficient defined above and we recall that /SAt/ is the normalized reflected power also as
defined above. The energy absorption is seen to be a strong function of the bias level as would be
expected if the resonance were a plasma sheath resonance. This result is shown more completely in
Figure (8) where we show a contour plot of the power at each resonant frequency for varying bias
voltages. In this 2D view, the relative intensity is used to indicate energy deposition as a function of
frequency. As is expected, the resonance vanishes as the bias potential approaches the plasma
potential and the sheath vanishes.

(iii) Energy absorption and required effective collision frequency

Figure (9) is an example of energy absorption observed for the small sphere compared to
theoretical estimates for the case of no density gradient but increasing values of effective collision
frequency in the main plasma.

The theoretical curves are plotted for 3 values of effective collision frequency all of which are
at least two orders of nmagnitude higher than the actual collision frequency based on electron-neutral
collisions. Also the calculation assumes no sheath and a constant density plasma using the impedance
of Eqn (A3) in Appendix I below and the assumption of 50 ohm impedance matching between the
cabling and the network analyzer. The unusual higher frequency oscillations in the data are associated
with chamber resonances and are not part of the considerations related to absorption.

What is clear from this plot for our plasma conditions is that if we associate the apparent energy
absorption seen with collisionless absorption, we must find the effective collision frequency much
larger than the usual resistive component assumed responsible for the energy exchange. Below we
have outlined an "effective resistance" which can be defined for this which is based on a plasma density
gradient. In Figure (10) we plot the "effective"collision frequency based on the result of Eq n (A4) of
Appendix Al using collisionless resistance of Eqn (13) for R along with the derived sheath plasma
density profile. It is seen that in the region of collisionless energy absorption( i.e., Figure (5) shows the
closest approximation to impedance matching occurs around r = 1.1 cm), a required collision frequency
near 6 x 107 sec -1 is indicated consistent with Figure (9). Or, in the range of roughly 200 Ohms the
collision frequency, v, is seen in Figure (10) to be such that, v- .01-. 001 o,,, a collision frequency at
least two orders of magnitude higher that due to Joule collisions and sufficient to produce detectable
energy absorption phenomena.
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(iv) Absorption as a function of Debye length

The series resonance shown in Figure (11) is a plot of the normalized frequency of the
resonances observed as a function of Debye length, or plasma density. The data in Figure (11) were
gotten by finding the maximum power absorption as a function of normalized frequency and then
plotting versus a normalized probe radius. The plasma density was varied to produce the normalized
probe radius. For example, the radius of the Aluminum sphere is on the order of 1 cm and for AD -
0.05 cm , ne - 2.5 x 108 cm-3 , and R//14 - 20 and, for this case, we are in the range where RP > >/D
The theoretical curve (triangles) in Figure (11) are calculated using Eqn (36) below from an earlier
work'1,19' According to these calculations in the quasi-static approximation for monopole excitation
of a sphere, the resonance positions are given approximately by,

FsIR (36)

where s is the sheath length. Further calculations using the Vlasov equation concluded that an
approximation to s valid in many regimes is s - 5 ID. This approximation is shown to be valid as long
as R is not too small compared to AD. Using this value for s for the theoretical part of Figure (11), it
appears that for our case the approximation is also a close one. The electron densities used in the
calculation of 4D were measured by a conventional Langmuir probe. The resonance frequencies, which
were selected at the position of maximum energy absorption as described above, were taken without
regard to the frequency width of the resonance and so there are no resolution estimates on the data.
From Figure (7) it can be seen that the minima are well-defined. We conclude from this figure that the
calculations based on sheath plasma resonance positions are consistent with the experimental data.

(v) Chamber radial density variation

Shown in Figure (12) is the plasma frequency, 6)pe, as a function of radial position taken from
electron density measured by a Langmuir probe. Each data point is the average of a number of trials at
a given radius and the spread in individual measurements is no greater than 10%. The position of the
spherical probe was approximately at r = 0.1 m. It is clear from this figure that the density gradient in
the main chamber plays no role in the collisionless absorption.

(vi) Magnetic field dependence
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Finally for completeness we present data examining the effect of a magnetic field on the results.
The presence of a magnetic field is expected to drastically alter the shape of the sheath with respect to
the field direction in addition to a multitude of other possible effects 20 and therefore conclusions based
on the field free case are not expected to hold in general. However, in order to maintain our plasma,
it is necessary to apply a small axial (solenoidal) magnetic field on the order typically of - 2 Gauss. In
fact the field introduces a preferred axis that alters the analysis, but the alterations are weak provided
the electron cyclotron frequency is small compared to w,

u2 2

C<W . (37)

In the experiments D2e < 2 x 1W~ s' (for fields below 10 Gauss), whereas 6,,_, > 2 x &Os s-' (for plasma
densities above 107 cm-3). The condition of Eqn (37) is met for most all experimental conditions. To
demonstrate this experimentally, shown in Figure (13) is a plot of the variation in resonance minimum
as function of frequency and magnetic field varying from 1 to 10 Gauss. Although the range of variation
of the magnetic field for this data is limited it nevertheless represents the actual range of magnetic field
variation applicable in our experimental setup. Figure (14) is a plot of the maximum normalized
positions of the resonance versus B as taken from Figure (13). Although there appears to be some effect
discernible from the plot there is not a clear trend nor a dependence of peak position on magnetic field,
at least for this data set in this limited range of B variation.

VI. Conclusions

We have observed collisionless energy absorption using a network analyzer for a small spherical
probe in a vacuum chamber. We have used Maxwell's equations along with the continuity equation and
assumptions on relative parameter magnitudes to calculate an effective collisionless resistance based on
spherical geometry and a derived density profile. The resistance is evaluated as the residue of a contour
integral consistent with earlier work. Sheath and presheath considerations have been taken into account
to estimate the sheath electron density profile. We have estimated an effective collision frequency based
on this resistance and find it to be on the order of two to three orders of magnitude higher than that due
solely to Joule collisions. Our estimates of effective collision frequency are also experimentally based
on results of measuring the reflected versus incident power to the probe using a network analyzer. As
expected, the energy deposition vanishes in the limit of a vanishing sheath as a function of probe bias.
Finally, there does not appear to be a magnetic field dependence for the low ranges of B necessary to
maintain our plasma.

Acknowledgments: This work was supported by ONR

VII. Appendix I
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An alternate widely-used elementary approach to an investigation of the effect of applying an RF
field to a metallic object inside a vacuum chamber and immersed in a plasma is to assume that the
configuration behaves approximately as a capacitor with a dielectric.25'26 The boundaries are the
conductor surface and the vacuum chamber walls. For an ordinary dielectric C = Co k, with k the
dielectric constant where k>] and Co is the vacuum capacitance. For the plasma capacitor, C = Co (wd)
where e(6)) is the dielectric constant. The straightforward estimate for e(wo) is based again on
Maxwell's wave equations for a cold, non-drifting, unmagnetized plasma,

a 8E i a'EVx(VxE)K= -(-1 (4-j+ )=- (A 1)
C2 t at c2 at 2

Using the same assumptions for the electron momentum equation as in the main body of the text, we
arrive at Eqn (8), and finally at the expression for the dielectric constant,

A) 2 (2A 2 2 V22
•(co) : 1-i Pe - (A . 12)Em(v+i) , 2-v2 Wo(o 2 +v2)

Resistive effects are seen then to contribute via the imaginary part of E(co). (The sign of this term
is positive for an assumed e" variation). Ion and neutral collisions both contribute to a collision
frequency but the electron-neutral collision frequency is dominant over all other contributions under
conditions of weak ionization or when W/N < ]Or' where N is neutral gas density. In the experiment
here we use an approximation to electron-neutral collision frequency as v = 7 x 10" N Te,/ and neutral
pressure of 3 x 10' Torr (N - 10i1 cm-3 ). Electron density is typically on the order of 107-109 cm 3 .

It was noticed early on that if one uses the simple form for the permittivity in Eqn (A2), the
impedance for a plasma capacitor, C, has the form of the impedance of a resistor and inductor connected
in series, with both connected in parallel with a capacitor, Co , i.e., rearranging Eqn (A2) and
substituting for C we have

1 11Z=-

iACi V W (A3i•C i~crCo [i(ACo0 +[ i + ]_] (13)
2 2

where this familiar form of the impedance allows us by analogy to define the circuit inductance and
resistance as2425
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Lz 1 -VL =- R = -v= L
P 2 ' P 2 (A4)pe 0 pe 0

where WOpe is the plasma frequency. This idea leaves open the possibility of interpreting v of Eqn (A4)
loosely as an "effective" collision frequency in the absence of the usual resistive contribution. A
radiation resistance, R., is then related to the plasma inductance as also seen in Eqn (A4).

The expression for the impedance given by Eqn. (A3) is not specific with respect to geometry
and does not include a sheath between the probe/antenna and the plasma or between the plasma and the
chamber walls. In addition we note that no provision has been made for an electron density gradient in
the expression for plasma permittivity of Eqn (A2) which would render the analysis nonlinear. We can
avoid the complications associated with the density gradient in the specific case of spherical geometry
by considering a plasma-sphere system to consist of N concentric spheres of radius r, separated from
one another by dielectric constants which vary as a function of radius but are constant between any two
spheres. Using this assumption as the basis of the model the expression for total capacitance can be
shown to be

N ri~lFi (A5)
Ctotal lctrýlr,

In the limit of small separation between the spheres this expression becomes the integral,

f 2 +f 2(A6)
Ctotal ' 4(r)r2  r p(r)r

where r, is chamber radius and we specifically separate the sheath region at the probe by integrating to
the sheath edge and distinguish between permittivity in the sheath region, e, and that in the main
plasma, EP. We do not include a sheath at the large chamber walls. In this manner we introduce a
plasma density which is a function of r in each region. Also, we recognize Eqn. (A6) as an alternate
expression for the potential,

V(r0)- If E(r)dr E(r)drf (A7)

r0 1 r
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The total impedance now appears as

1 1 r. h

1 1 r~t,-i, f & 2"__io~t,-----, S (r)r' r ýP(r)r 2] "( 8

Substituting the result of Eqn (A2) for the collisionless case and collapsing the two integrals into one
results in an identical expression to Eqn (10) in the main body of the paper.

The result for the collisionless resistance found in Eqn. (13) in the main body of the work is
gotten by evaluating the integral for plasma impedance using a contour integral which separates the
integral into a principal value integral in the upper-half complex plane plus the residue at the simple pole
of the integrand. The residue at the pole provides a real contribution to the impedance which arises from
the addition of the term 2 7rL-Res to the Cauchy principal value integral as described in that section. The
integral to be evaluated derives from the expression of Eqn. (A8) and the definition of capacitance seen
in Eqn (A6) or,

dr
r 2

ZJ W2 (A9)

ro r(1---)

lp

where c, has been evaluated using Eqn (A2) with the collision frequency, v = 0. This expression is

identical to Eqn (11) in the main body of the report. Appendix (II) below considers a widely-used and

mathematically convenient form for the density profile in evaluating this integral; however, a more
physically realistic model of the sheath profile is used to derive the results in the body of this work.

VIII. Appendix II
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A commonly used expression for electron density spatial variation, employed often for
mathematical ease in the case of planar geometry' is, in a spherical case with density increasing from 0
at ro , to n, at the bulk plasma edge, r, given by,

S2

ne(r)=2n, [1 + s F (2A1)(r-ro)2

where s, the sheath length, is r,-ro. If we require the sheath density gradient to have this form, the result
for the real part of the complex impedance resulting from evaluation of the residue in the case of
spherical geometry can be shown to be,

2-[ [2'-1]

R()= 2 (2 ) (2A2)

(s+r 0[ - 11 1/2)2 ep

In this form w is the frequency corresponding to the plasma frequency at the resonant position, (dP, is
the maximum of the density profile occurring at the sheath edge (corresponding to n, ) for an applied
bias in ion saturation, and dpe is the local plasma potential at r whose derivative is evaluated at the
resonant position, rr In this case,

dG~p~)~~ &2 2 3&%,r) _(A) (4)2 (A)PI .23

[ 1-] [2- 11] (2A3)

where the pole in the integrand occurs at,

22
rr [ 2r, - 1]-1/2  (2A4)

We point out again, as in the main paper, that the collisionless resistance calculated arises not
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from a bulk plasma density gradient but from a density gradient in the sheath at the probe itself.

IX. Appendix III

In a somewhat alternate approach appealing to energy consideration, power delivered to a
parallel plate capacitor is compared to that absorbed to infer a collsionless resistance' 8. This
association with resistance arises from first calculating the power absorbed by the plasma in a
collisionless Vlasov calculation and comparing that to the power delivered. The expression for the
power is a function of the parallel plate capacitor configuration and is not generally applicable to other
geometries. The results are nevertheless useful as an alternate means of estimating R. The time-
averaged power input into a parallel plate capacitor of area A, is shown to be' 8

Aý
2

"-<P>-= (--(-) A,d2 (3A1)

where j = ikoto with P related to the perturbation electric field. and the derivative is taken at the
resonant layer position. If we use this expression at the same time noticing that a plasma in general
has both real current and displacement current and assume that the current very close to a plate surface
is all displacement current (and is therefore the total current), the instantaneous power absorbed for
the parallel plate geometry is given by

P= 12R = (•22 (3A2)

with the time averaged total power given as,

lIiT T a(D 1EE2, c2(2A 2t12 R

"-<P> = j=l R d& = Tj(Eat, E-)2R - 2 (3A3)

0 0
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Comparing Eqns (3A1) and (3A3), for the case of the cold, collisionless plasma slab, the effective
resistive component appears as given in Eqn (31)23.
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XI. Figures

Figure 1 Sheath potential (0) vs distance from sphere (r)
for sphere at floating potential
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Figure 2: Presheath potential (4) vs distance from sheath
edge(r) for sphere at floating potential
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Figure 3: Measured resistance (R) vs applied frequency (co):
(i) n, =2.65x 107 cm-3 , (ii) ne=6.75 x101cm-,

(iii) ne = 2.5 x 108 cm 3
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Figure 4: Measured reactance Im Z vs applied frequency (wo):
(i) n. = 2.65 x 10' cm-', (ii) ne = 6.75 x 107 cm-3,

(iii) ne =2.5 x 10' cma
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Figure 5: Collisionless resistance (R) vs radius (r)
based on theoretical sheath model. Sheath edge at
r=1.25 cm, sphere at r=1.0 cm
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Figure 6: Reflected power (T2) vs normalized frequency (oi/mo)
for 3 applied sweep voltage levels and a probe dc bias of
-5 volts
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Figure 7: Energy absorption ( Si1 1) vs normalized
applied frequency (w/wp) for differing probe dc bias
levels.
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Figure 8: Contour plot of the power at each resonant
frequency for varying bias voltages.
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Figure 9: Normalized reflected power versus normalized
applied frequency (w/o.) for varying levels of collisions

2.0

-- data
- nu=.Owp(theory)

nu=.02wp(theory)
1.5 nu=.O3wp(theory)

0

1.0

0.5

0.0 -

0.0 0.2 0.4 0.6 0.8 1.0

(IVm

Figure 10: Effective Collision frequency (v) versus
distance into sheath (r). Theoretical sheath model

1e+8

8e+7

6e+7

4e+7

2e+7

0 ,

1.00 1.05 1.10 1.15 1.20

r (cm)

29



Figure 11: Normalized frequency of resonance (o/wP)
versus normalized sphere radius
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Figure 12: Bulk plasma frequency (w,) versus radial
distance from chamber center
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Figure 13: Variation in resonance minimum as function
of magnetic field. Re (F) versus applied frequency (w)
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Figure 14: Normalized resonance minima positions ( w./• )
of Figure (12) versus B (Gauss)
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